Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis[diaquabis(2,2-bipyridine N, N^{\prime}-dioxide- $\kappa^{2} O, O^{\prime}$)cobalt(II)] ξ-octamolybdate dihydrate

Tan Su ${ }^{\mathbf{a}, \mathbf{b}}$ and Ya-Qian Lan ${ }^{\mathbf{a} *}$

${ }^{\text {a }}$ Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Inorganic, Synthesis and Preparative Chemistry, Jilin University, Changchun 130023, People's Republic of China
Correspondence e-mail: lanyq176@nenu.edu.cn

Received 2 April 2007

Accepted 16 April 2007
Online 13 October 2007
The title organic-inorganic hybrid compound, $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8^{-}}\right.\right.$ $\left.\left.\mathrm{N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, consists of $\left[\mathrm{Co}(\text { bpdo })_{2}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ (bpdo is 2,2-bipyridine N, N^{\prime}-dioxide) and $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ groups in a 2:1 ratio, plus two water solvent molecules. The independent Co atom in the cation is coordinated by four O atoms from two bpdo ligands and two water molecules, in a distorted octahedral geometry. The counter-anions, built up around a symmetry center, are linked by solvent water molecules through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate two-dimensional layers, which are in turn linked by coordinated water molecules from the cationic units through further $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a threedimensional supramolecular structure.

Comment

Polyoxometalates (Pope, 1983; Hill, 1998; Fukaya \& Yamase, 2003), as a unique class of metal-oxide clusters, have many properties that make them attractive for applications in catalysis, biology, magnetism, optics and medicine (Kögerler \&

Cronin, 2005; Yamase, 1998). Recently, important advances have been achieved in the coordination chemistry of polyoxoanions with classical transition metal coordination complexes or fragments. Among the various polyoxometalate structures of interest, octamolybdate is a particularly attrac-
tive cluster with a variety of structural isomers (Hagrman et al., 1997; Yang et al., 2002). As reported previously (Finn \& Zubieta, 2001; Liu et al., 2001), much of the work has been focused on transition metal complexes with $\alpha-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ and $\beta-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ clusters. However, research on the $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ cluster with metal complexes is comparatively scarce. In the present work, the assembly by the hydrothermal method of $\mathrm{Na}_{2} \mathrm{MoO}_{4}, 2$,2-bipyridine N, N^{\prime}-dioxide (bpdo) and cobalt(II) nitrate resulted in the complex $\left[\mathrm{Co}(\mathrm{bpdo})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}-$ $\left[\mathrm{Mo}_{4} \mathrm{O}_{13}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I).

As shown in Fig. 1, the compound contains two subunits (in a 2:1 ratio), viz. a cationic group, $\left[\mathrm{Co}(\mathrm{bpdo})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$, and its anionic counterpart, a $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ cluster which lies around an inversion center. The structure is completed by a water

Figure 1
A split view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. (a) The $\left[\mathrm{Co}(\text { bpdo })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ unit and a solvent water molecule and (b) the $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ cluster. Full (empty) ellipsoids represent independent (symmetry-related) atoms. [Symmetry code: (i) $1-x, 1-y, 1-z$.]
solvent molecule. The $\mathrm{Co}^{\mathrm{II}}$ ion exhibits a distorted octahedral geometry and is coordinated by four O atoms from two bpdo ligands, with $\mathrm{Co}-\mathrm{O}$ distances ranging from 2.061 (2) to 2.069 (2) \AA, and two water molecules, with coordination distances of 2.098 (2) and 2.109 (2) \AA (Table 1), similar to other $\mathrm{Co}-\mathrm{O}$ distances in the literature (viz. Zhang et al., 2005). Two kinds of bpdo ligands coordinate the $\mathrm{Co}^{\mathrm{II}}$ ion as bidentate ligands. The dihedral angles between two rings from the same bpdo ligand are 29.1 (1) and 29.4 (1) $)^{\circ}$, respectively.

Figure 2
The inorganic layer, composed of hydrogen-bonded ξ - $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ clusters and solvent water molecules.

The $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ octamolybdate anion exhibits an open structure (Xu et al., 1999; Bridgeman, 2002). Each cluster contains an $\mathrm{Mo}_{6} \mathrm{O}_{6}$ ring capped on opposite faces by MoO_{6} octahedra. In the ring, the linkage between any two MoO_{5} trigonal bipyramids is edge shared, while that between any MoO_{6} and MoO_{5} groups is corner shared. Each capping MoO_{6} octahedron is linked to four groups in the ring, viz. two MoO_{6} octahedra and one MoO_{5} pyramid by edge sharing and a second MoO_{5} bipyramid by corner sharing. In addition, the capping MoO_{6} octahedra are attached to one another by edge sharing. Therefore, three types of O atoms exist in the cluster, according to their coordination behavior, viz. six $\mathrm{O}\left(\mu_{3}\right)$, six $\mathrm{O}\left(\mu_{2}\right)$ and 14 terminal $\mathrm{O}(t)$ atoms. The $\mathrm{Mo}-\mathrm{O}$ distances are similar to those in other reported $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ clusters (Xu et al., 1999).

The structure presents an interesting water cluster. As shown in Table 2, one coordinated (O3W) and one solvent water molecule (O1 W) assemble into a dimer with an OW…OW distance of 2.689 (4) \AA, shorter than those in regular ice, liquid water and water vapor ($2.74,2.85$ and $2.98 \AA$, respectively). Each O1 W molecule, in turn, links two different $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions to form a two-dimensional anionic layer (Table 2 and Fig. 2).
In addition, the $\left[\mathrm{Co}(\text { bpdo })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ units form hydrogenbonded dimers through $\mathrm{O} 2 W \cdots \mathrm{O} 17^{\mathrm{ii}}$ hydrogen bonds (Table 2). These dimers, in turn, link four $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions from adjacent two-dimensional inorganic sheets to generate a three-dimensional supramolecular structure (Fig. 3).

Figure 3
A view of a cationic dimer connecting four $\xi-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ clusters from adjacent inorganic sheets into a three-dimensional structure. The symmetry codes are as in Tables 1 and 2.

Experimental

The bpdo ligand was synthesized according to the method reported by Simpsox et al. (1963). A mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.146 \mathrm{~g}$, $0.5 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.484 \mathrm{~g}, 2.0 \mathrm{mmol})$, bpdo $(0.188 \mathrm{~g}$, $1.0 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was adjusted to approximately pH 3 with $\mathrm{HNO}_{3}\left(6 \mathrm{~mol} \mathrm{l}^{-1}\right)$ and stirred for 1 h , and then transferred to and sealed in a 25 ml Teflon-lined stainless steel container. The container was heated to 423 K and held at that temperature for 72 h , then cooled to 373 K at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ and held for 8 h , followed by further cooling to 303 K at a rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$. Pink crystals of the title compound were collected in 76.2% yield based on $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$. Elemental analyses calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{CoMo}_{4} \mathrm{~N}_{4} \mathrm{O}_{20}$: C $22.22, \mathrm{H}$ 2.05 , N 5.18%; found: C 22.35 , H 2.03 , N 5.21%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}-$
$\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=2162.22$
Monoclinic, $P 2_{1} / n$
$a=12.603$ (3) \AA
$b=18.014$ (3) \AA
$c=14.658$ (4) \AA

Data collection

Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.466, T_{\text {max }}=0.661$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.062$
$S=1.04$
7333 reflections
460 parameters
10 restraints

$$
\beta=110.392(5)^{\circ}
$$

$$
V=3119.3(11) \AA^{3}
$$

$$
Z=2
$$

Mo $K \alpha$ radiation
$\mu=2.18 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.43 \times 0.30 \times 0.19 \mathrm{~mm}$

18887 measured reflections 7333 independent reflections 5992 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.61 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Co1-O15	2.061 (2)	Mo2-O12	1.8991 (19)
Co1-O16	2.0614 (19)	$\mathrm{Mo} 2-\mathrm{O} 10^{\text {i }}$	2.0089 (19)
Co1-O14	2.067 (2)	$\mathrm{Mo} 2-\mathrm{OF}^{\text {i }}$	2.2307 (18)
Co1-O17	2.069 (2)	Mo2-O13	2.312 (2)
Co1-O3W	2.098 (2)	Mo3-O8	1.692 (2)
Co1-O2W	2.109 (2)	Mo3-O7	1.697 (2)
Mo1-O6	1.693 (2)	Mo3-O11	1.846 (2)
Mo1-O13	1.7475 (19)	Mo3-O10	1.9117 (19)
Mo1-O5	1.8811 (18)	Mo3-O9	2.2898 (19)
Mo1-O9	1.9021 (19)	Mo4-O1	1.682 (3)
Mo1-O10	2.2527 (19)	Mo4-O2	1.696 (2)
$\mathrm{Mo} 1-\mathrm{O} 5^{\text {i }}$	2.458 (2)	Mo4-O12	1.927 (2)
Mo2-O4	1.692 (2)	Mo4-O11	1.974 (2)
Mo2-O3	1.698 (2)	Mo4-O9	2.1676 (19)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

All H atoms of water molecules were located in difference maps and refined isotropically, with $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{O})(\mathrm{O}-\mathrm{H}$ distances are given in Table 2). Other H atoms were positioned

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 12^{\text {ii }}$	0.843 (17)	2.00 (2)	2.819 (3)	163 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 7^{\mathrm{iii}}$	0.836 (17)	2.14 (2)	2.927 (4)	158 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 17^{\text {ii }}$	0.830 (17)	1.88 (2)	2.681 (3)	162 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O} 6$	0.84 (4)	2.16 (2)	2.930 (3)	154 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 A \cdots \mathrm{O} 1 W$	0.837 (17)	1.87 (2)	2.689 (4)	166 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 B \cdots \mathrm{O} 8^{\text {iii }}$	0.843 (17)	2.00 (2)	2.799 (3)	157 (3)

geometrically and allowed to ride on their parent atoms at $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20070309).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BG3034). Services for accessing these data are described at the back of the journal.

References

Bridgeman, A. J. (2002). J. Phys. Chem. A, 106, 12151-12160.
Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Finn, R. C. \& Zubieta, J. (2001). Inorg. Chem. 40, 2466-2467.
Fukaya, K. \& Yamase, T. (2003). Angew. Chem. 115, 678-682.
Hagrman, D., Zubieta, C., Haushalter, R. C. \& Zubieta, J. (1997). Angew. Chem. Int. Ed. Engl. 36, 873-876.
Hill, C. L. (1998). Chem. Rev. 98, 1-2.
Kögerler, P. \& Cronin, L. (2005). Angew. Chem. 117, 866-868.
Liu, C. M., Gao, S., Hu, H. M. \& Wang, Z. M. (2001). Chem. Commun. pp. 1636-1637.
Pope, M. T. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Simpsox, P. G., Vinciguerra, A. \& Quagliano, J. V. (1963). Inorg. Chem. 2, 282286.

Xu, J. Q., Wang, R. Z., Yang, G. Y., Xing, Y. H., Li, D. M., Bu, W. M., Ye, L., Fan, Y. G., Yang, G. D., Xing, Y., Lin, Y. H. \& Jia, H. Q. (1999). Chem. Commun. pp. 983-984.
Yamase, T. (1998). Chem. Rev. 98, 307-326.
Yang, W., Lu, C. \& Zhuang, H. (2002). J. Chem. Soc. Dalton Trans. pp. 28792884.

Zhang, X. M., Fang, R. Q. \& Wu, H. S. (2005). CrystEngComm, 7, 96-101.

